How to flatten JSON in Spark Dataframe

How to flatten whole JSON containing ArrayType and StructType in it? In order to flatten a JSON completely we don’t have any predefined function in Spark. We can write our own function that will flatten out JSON completely. We will write a function that will accept DataFrame. For each field in the DataFrame we will get the DataType. If the field is of ArrayType we will create new column with exploding the ArrayColumn using Spark explode_outer function. If the field is of StructType we will create new column with parentfield_childfield for each field in the StructType Field. This is a recursive function. Once the function doesn’t find any ArrayType or StructType. It will return the flattened DataFrame. Otherwise, It will it iterate through the schema to completely flatten out the JSON...

How to create Spark Dataframe on HBase table[Code Snippets]

There is no direct library to create Dataframe on HBase table like how we read Hive table with Spark sql. This post gives the way to create dataframe on top of Hbase table. You need to add hbase-client dependency to achieve this. Below is the link to get the dependency. Lets say the hbase table is ’emp’ with rowKey as ’empID’ and columns are ‘name’ and ‘city’ under the column-family named – ‘metadata’. Case class -EmpRow is used in order to give the structure to the dataframe. newAPIHadoopRDD is the API available in Spark to create RDD on hbase, configurations need to passed as shown below. Dataframe will be created when you parse this RDD on case class. ...

Lost Password


24 Tutorials